Given the open loop transfer function GH
1) asymptotic angles θi=n−m180−360i
where n: num of poles, m: num of zeros, i from 0 to n−m−1
2) asymptotic centroid σ=n−m∑poles−∑zeros
3) break points dsdK=0 or dsdGH and solve for S
4) departure angle (ϕ):∑ poles angles∣pole−∑ zeros angles∣pole+ϕ=180∘
5) arrival angle (ϕ):∑ poles angles∣zero−∑ zeros angles∣zero−ϕ=180∘
Ex) Draw root locus plot for GH=s(s2+8s+32)s2−8s+32
poles: 0,−4±4j zeros: 4±4j
asymptotic angle =3−2180+(360×0)=180∘
centroid =3−2(−4+4j)+(−4−4j)−((4+4j)+(4−4j))=−16
break points dsdK=0K=−GH1=−s2−8s+32s3+8s2+32s
(s2−8s+32)(3s2+16s+32)−(s3+8s2+32s)(2s−8)=0
s4−16s3+512s+1024=0⟹s=−2.928 or s=10.928 (rejected)
departure angle for (−4+4j):
(90+135)−(180+135)+ϕ=180∘⟹ϕ=270∘=−90∘
departure angle for (−4−4j):ϕ=−270∘=90∘
arrival angle for (4+4j):
(0+45+45)−(90)−ϕ=180∘⟹ϕ=−180∘=180∘
arrival angle for (4−4j):ϕ=180∘
to findKcritical:
characteristic equation 1+GH=0
K(s2−8s+32)+s3+8s2+32s=0
s3+(K+8)s2+(−8K+32)s+32K=0
s3 | 1 | −8k+32 |
---|---|---|
s2 | k+8 | 32k |
s | (k+8)(k+8)(−8k+32)−32k | 0 |
1 | 32k | 0 |
(k+8)(−8k+32)−32k=0⟹kcritical=2.928
(k+8)s2+32k=0
10.928s2+32×2.928=0⟹s=±j2.928
or by substituting s=jω in the characteristic equation
s3+(K+8)s2+(−8K+32)s+32K=0
−jω3−(K+8)ω2+(−8K+32)jω+32K=0
real = 0
−(K+8)ω2+32K=0⟹ω2=K+832K
imaginary = 0
−ω3+(−8K+32)ω=0⟹ω2=−8K+32
equate both values
K+832K=−8K+32
−8K2+32K−64K+256=32K
−8K2−64K+256=0⟹Kcritical=2.928
substituting k in ω2=−8K+32
ω=√32−8×2.928=±2.928
Animation
Range of K for system stability 0<K<2.928