Prepared by: Ibrahim Mohamed El-bastawisi
Odd function non linearity has an output of y=b1x+b3x3+b5x5+⋯ where x is a sinusoidal input x=Xsinωt
show that N(X)=b1+43b3X2+85X4+⋯
y=b1Xsinωt+b3X3sin3ωt+b5X5sin5ωt+⋯
use some trigonometric spells 🪄
sin3x=43sinx−sin3x
sin5x=161(sin(5x)−5sin(3x)+10sin(x))
discard higher order harmonics
sin3x=43sinx
sin5x=85sinx
or in general the first harmonic of odd powers of sinx is
(using Euler's formula and Binomial theorem) :
sinnx=2n/2(nk)sinx where k=2n±1
substitute
y=b1Xsinωt+43b3X3sinωt+85b5X5sinωt+⋯
N(X)=x(ωt)y(ωt)=Xsinωtb1Xsinωt+43b3X3sinωt+85b5X5sinωt+⋯
N(X)=b1+43b3X2+85b5X4+⋯#