Problem 1. prove that the system {1,x,23x2−21} is orthogonal over the interval [-1,1]. what is the value of ∣∣x∣∣2 ?
for the orthogonality of the system each two functions must be orthogonal
(1,x)=∫−11xdx=0
(1,23x2−21)=∫−1123x2−21dx=2∫0123x2−21dx=0
(x,23x2−21)=∫−1123x3−21xdx=0
∣∣x∣∣2=(x,x)=2∫01x2dx=2×31
f(x)=2a0+n=1∑∞(ancoslnπx+bnsinlnπx)
a0=l1∫−llf(x)dx an=l1∫−llf(x)coslnπxdx bn=l1∫−llf(x)sinlnπxdx
Example (5): Find a Fourier series representation of f(x)=x20<x<1
(a) f(x) is odd so a0=an=0
bn=2∫01x2sin1nπxdx=2[x2×−nπ1cosnπx+2x×n2π21sinnπx+2×n3π31cosnπx]01
=2[(−nπ1×(−1)n+0+n3π32×(−1)n)−(n3π32)]=Bn
∴f(x)=n=1∑∞Bn(x)sinnπx
dxd | ∫dx |
---|---|
x2 | sinnπx |
2x | −nπ1cosnπx |
2 | −n2π21sinnπx |
0 | n3π31cosnπx |
(b) f(x) is even so bn=0
a0=2∫01x2dx=32
an=2∫01x2cosnπxdx=2[x2×nπ1sinnπx+2x×n2π21cosnπx−2×n3π31sinnπ]01
=2(2×n2π2(−1n)−0)=4n2π2(−1n)
∴f(x)=31+n=1∑∞4n2π2(−1n)cosnπx
(c) f(x) is neither odd nor even and l = 1/2
a0=2∫01x2dx=32
an=2∫01x2cos2nπxdx
bn=2∫01x2sin2nπxdx
f(x)=2a0+n=1∑∞[ancos2πx+bnsin2nπx]
f(x)=π1∫0∞A(ω)cosωx+B(ω)sinωxdω
A(ω)=∫−∞∞f(x)cosωxdx
B(ω)=∫−∞∞f(x)cos(ω)xdx
A(ω)=0 if f(x) is odd over the period [−∞,∞]
B(ω)=0 if f(x) is even over the period [−∞,∞]
Example (1):
Find the Fourier integral representation of the function
f(x)={10∣x∣<1∣x∣>1
f(x) is even so B(ω)=0
A(ω)=∫−∞∞f(x)cosωxdx=∫−11cosωxdx=2∫01cosωxdx=ω2sinωx∣∣∣x=01=ω2sinω
f(−1)=21+0=21=f(1)
f(x)=⎩⎪⎨⎪⎧1210∣x∣<1∣x∣=1∣x∣>1=π1∫0∞ω2sinω×cosωxdω
∫0∞ωsinω×cosωxdω=⎩⎪⎨⎪⎧π/2π/40∣x∣<1∣x∣=1∣x∣>1
(18)* Using the Fourier integral representation, verify the identities
4.∫0∞ω2+k2ωsinxωdω=2πe−kxk>0,x>0
let f(x)=2e−kx=π1∫0∞B(ω)sinωxdω
A(ω)=0 because it is a Fourier sine integral
B(ω)=2∫0∞21e−kxsinωxdx=k2+ω2ω
f(x)=π1∫0∞k2+ω2ωsinωxdω=2e−kx×π⟹#