Prepared by: Ibrahim Mohamed El-bastawisi
A describing function describes the behavior of a nonlinear element for purely sinusoidal excitation.
N(A,ω)=x(ωt)y(ωt) where x is a sinusoidal input of amplitude A : x(ωt)=Asinωt
if we expand the output in a Fourier Series and consider only the first harmonic, the describing function becomes:
N(A,ω)=x(ωt)y(ωt)=Asinωtacosωt+bsinωt=A∠0a∠90+b∠0=A√a2+b2∠tan−1ba
x(ωt)=Asinωt y(x)={M−Mx>0x<0 y(ωt)={M−MAsinωt>0Asinωt<0
Find Fourier series fundamental component:
y(ωt)={M−MAsinωt>0Asinωt<0
y(ωt)={M−M0<ωt<ππ<ωt<2π
a=0
b=π4M∫0π/2sinωtdωt=π4M
N(A)=πA4M
−N(A)1=−4MπA
x(ωt)=Asinωt y(x)=⎩⎪⎨⎪⎧M−M0x>δx<−δotherwise y(ωt)=⎩⎪⎨⎪⎧M−M0Asinωt>δAsinωt<−δotherwise
Find Fourier series fundamental component:
y(ωt)=⎩⎪⎨⎪⎧M−M0Asinωt>δAsinωt<−δotherwise
let γ∷x(γ)=δ
y(ωt)=⎩⎪⎨⎪⎧M−M0γ<ωt<π−γπ+γ<ωt<2π−γotherwise
a=0
b=π4M∫γπ/2sinωtdωt=π4Mcosγ
but x(γ)=δ⟹Asinγ=δ
sinγ=Aδ
cosγ=A√A2−δ2=√1−(Aδ)2
γ=sin−1Aδ
N(A)=πA4M√1−(Aδ)2
−N(A)1=−4M√1−(δ/A)2πA
x(ωt)=Asinωt y(x)=⎩⎪⎨⎪⎧M−M??x>δx<−δotherwise y(ωt)=⎩⎪⎨⎪⎧M−M??Asinωt>δAsinωt<−δotherwise
Find Fourier series fundamental component:
let γ∷x(γ)=δ
y(ωt)={M−Mγ<ωt<π+γπ+γ<ωt<2π+γ
a=π2∫γπ+γMcosωtdωt=π2M(sin(π+γ)−sinγ)=π−4Msinγ
b=π2∫γπ+γMsinωtdωt=π2M(−cos(π+γ)+cosγ)=π4Mcosγ
N(A)=A√a2+b2∠tan−1ba
√a2+b2=√(π−4Msinγ)2+(π4Mcosγ)2=π4M
tan−1ba=tan−1(4M/π)cosγ−(4M/π)sinγ=−γ
N(A)=πA4M∠−γ
but x(γ)=δ⟹Asinγ=δ
sinγ=Aδ
cosγ=A√A2−δ2=√1−(Aδ)2
γ=sin−1Aδ
N(A)=πA4M∠−sin−1Aδ
N(A)−1=−4MπA∠γ=−4MπA(cosγ+jsinγ)
N(A)−1=−4MπA(√1−(Aδ)2+jAδ)
x(ωt)=Asinωt y(x)=⎩⎪⎨⎪⎧M−MKxx>δx<−δotherwise y(ωt)=⎩⎪⎨⎪⎧M−MKAsinωtAsinωt>δAsinωt<−δotherwise
Find Fourier series fundamental component:
let γ∷x(γ)=δ
y(ωt)=⎩⎪⎨⎪⎧M−MKAsinωtγ<ωt<π−γπ+γ<ωt<2π−γotherwise
a=0
b=π4(∫0γKAsin2ωt+∫γπ/2Msinωtdωt)
=π4(∫0γ2KA(1−cos2ωt)+∫γπ/2Msinωtdωt)
=π4(2KA[ωt−2sin2ωt]0γ+[−Mcosωt]γπ/2)
=π4(2KA(γ−2sin2γ)+Mcosγ)
but M=Kδ
b=π4K(2A(γ−2sin2γ)+δcosγ)
and x(γ)=δ⟹Asinγ=δ
b=π4KA(21(γ−2sin2γ)+sinγcosγ)
and sin2γ=2sinγcosγ
b=π4KA(21(γ−sinγcosγ)+sinγcosγ)
b=π2KA(γ+sinγcosγ)
sinγ=Aδ
cosγ=A√A2−δ2=√1−(Aδ)2
γ=sin−1Aδ
b=π2KA(sin−1Aδ+Aδ√1−(Aδ)2)
N(A)=π2K(sin−1Aδ+Aδ√1−(Aδ)2)
let Aδ=x⟹KN(x)=π2(sin−1x+x√1−x2)
x(ωt)=Asinωt y(x)=⎩⎪⎨⎪⎧K(x−δ)K(x+δ)0x>δx<−δotherwise y(x)=⎩⎪⎨⎪⎧K(Asinωt−δ)K(Asinωt+δ)0x>δx<−δotherwise
Find Fourier series fundamental component:
let γ∷x(γ)=δ
y(ωt)=⎩⎪⎨⎪⎧K(Asinωt−δ)K(Asinωt+δ)0γ<ωt<π−γπ+γ<ωt<2π−γotherwise
a=0
b=π4∫γπ/2K(Asinωt−δ)sinωt
but x(γ)=δ⟹Asinγ=δ
b=π4AK∫γπ/2sin2ωt−sinγsinωt
=π4AK∫γπ/221−21cos2ωt−sinγsinωt
=π4AK[2ωt−41sin2ωt+sinγcosωt]γπ/2
b=π4AK[(4π−0+0)−(2γ−41sin2γ+sinγcosγ)]
but sin2γ=2sinγcosγ
b=π4AK(4π−2γ−21sinγcosγ)
sinγ=Aδ
cosγ=A√A2−δ2=√1−(Aδ)2
γ=sin−1Aδ
b=π4AK(4π−21(sin−1Aδ+Aδ√1−(Aδ)2))
N(A)=π4K(4π−21(sin−1Aδ+Aδ√1−(Aδ)2))
let Aδ=x⟹KN(x)=π4(4π−21(sin−1x+x√1−x2))