Student Id=bc240410868
Question 1: Marks=05 Find a parametric equation of the line through and , where
Solution •
P1=⎣⎢⎢⎢⎡−514⎦⎥⎥⎥⎤ P2=⎣⎢⎢⎢⎡−3−17⎦⎥⎥⎥⎤
Find the direction vector (d)
d= P2-P1
=⎣⎢⎢⎢⎡−3−17⎦⎥⎥⎥⎤-⎣⎢⎢⎢⎡−51−4⎦⎥⎥⎥⎤
=⎣⎢⎢⎢⎡2−211⎦⎥⎥⎥⎤Ans.
1.write the parametric equation.
r(t)=⎣⎢⎢⎢⎡−51−4⎦⎥⎥⎥⎤+t⎣⎢⎢⎢⎡2−211⎦⎥⎥⎥⎤
Components form.
x=-5+2t
y=1-2t
z=-4+11t
Question 2: Consider a linear transformation T from R2 into R2 defined by:T⎝⎛xy⎠⎞=⎝⎛−5x+3yx−7y⎠⎞ . Show that T is invertible, and also find T-1⎝⎛57⎠⎞
Solution.
1.write the transformation T in matrix form
The transformation T maps [x,y]
to [-5x + 3y x -7y]
T([x,y])=[-5. 3. 1. 7][x,y]
Invertibility.
Compute the determinant of A;
det(A)=(-5)(-7)-(3)(1)= 35-3=32
Find the inverse matrix T-1
Using formula;
A-1=det(A)1[d −b −c a]
A=[-5. 3. -1. -7]
A-1=32[−7−3−1−5]1
=[−327 −32332−1−325]
Verify that T-1 correctly reverse the transformation T
To verify
T-1(T([x,y]))
=A-1A:
[−327−323−321−325][-5. 3. 1. -7]
=[1. 0. 0. 1]
T-1([st])=[−327s−323s−321s−325t] Answer.
Question 3: Consider a linear transformation T from R2 into R2 formed by first performing a reflection across x-axis, and then performing a vertical shear mapping that transforms e1 into e1+2e2 (leaving e2 unchanged). Determine the standard matrix for the linear transformation T.
Solution
Reflection across the axis
(x,y) Into (x,-y)
R=⎣⎡100−1⎦⎤
Vertical shear maping
e1=(1,0) into e1+2e2=(1,2)
While S=⎣⎡1 021⎦⎤
Combine the transformation
T=S.R
T=⎣⎡1021⎦⎤.⎣⎡1001⎦⎤=⎣⎡10 2−1⎦⎤Answer
Question 4: Consider a matrix A ⎣⎡b −2−1 a⎦⎤and its inverse A-1=⎣⎡1 21 3⎦⎤ . Find the values of a and b by verifying your result using the property .
Solution.
Multiply A and A-1
A×A-1=⎣⎡b −2−1 a⎦⎤×⎣⎡1 21 3⎦⎤
Multiply row by column
A×A-1=b(1)+(-2)(1)=b-2
b(2)+(-2)(3)=2b-6
(-1)(1)+(a)(1)=-1+a
(-1)(2)+(a)(3)=-2+3a
Equate A×A-1to I
⎣⎡b−2 2b−6−1+a −2+3a ⎦⎤=⎣⎡1 00 1⎦⎤b−2=12b−6=0−1+a=0−2+3a=1b−2=1b=3verify2(3)−6=06−6=00=0b=3which is,true thatfrom−1+a=0a=1from−2+3a=1−2+3(1)=1−2+3=11=1a=1,b=3 answer