prove that
cos3x+sin3x/cosx+sinx
[(cosx+sinx)(cos2x−cosxsinx+sin2x)]
cosx+sinx
[(cos2x+sin2x−cosxsinx)(cosx+sinx)]
cosx+sinx
1−cosxsinx
Q E D
#2 . If asinθ+b cosθ=c
prove that acosθ−bsinθ=√(a2+b2+c2)
solution
(acosθ+bsinθ)2=c2
a2sin2θ+b2sin2θ+2absinθcosθ=c2
a2(1−cos2θ)+b2(1−sin2θ)+2absinθcosθ=c2
a2−a2cos2θ+b2−b2sin2θ+2absinθcosθ=c2
a2+b2−c2=acos2θ+bsin2θ−2absinθcosθ
√a2+b2−c2=(acosθ−bsinθ). Q.E.D
(secA sinA)(secA−cosA) = 1/tanAcot A