A+ΔA=4(r+Δr)−(r+Δr)3 (a+b)3=a3+3a2b+3ab2+b3
A+ΔA−A=4r+4Δr−r3−3r2Δr−3rΔr2−Δr3−4r+r3
ΔA=4Δr−3r2Δr−3rΔr2−Δr3
ΔrΔA=Δr4Δr−3r2Δr−3rΔr2−Δr3
ΔrΔA=4−3r2−3rΔr−Δr2
ΔrΔA=4−3r2−3r(0)−(0)2
ΔrΔA=4−3r2
u+Δu=4(v+Δv)2+2(v+Δv)3
u+Δu=4(v2+2vΔv+Δv2)+2(v3+3v2Δv+3vΔv2+Δv3)
u+Δu=4v2+8vΔv+4Δv2+2v3+6v2Δv+6vΔv2+2Δv3
u+Δu−u=4v2+8vΔv+4Δv2+2v3+6v2Δv+6vΔv2+2Δv3−4v2−2v3
ΔvΔu=Δv8vΔv+4Δv2+6v2Δv+6vΔv2+2Δv3
ΔvΔu=8v+4Δv+6v2+6vΔv+2Δv2
ΔvΔu=8v+4(0)+6v2+6v(0)+2(0)2
ΔvΔu=8v+6v2
y+Δy=(x+Δx)2+23
y+Δy−y=(x2+2xΔx+Δx)+23−x2+23
ΔxΔy=((x2+2xΔx+Δx)+2)(x2+2)3x2+6−3x2−6xΔx−3Δx2−6
ΔxΔy=−((x2+2xΔx+Δx2)+2)(x2+2)6xΔx+3Δx2
ΔxΔy=−((x2+2xΔx+Δx2)+2)(x2+2)Δx(6x+3Δx)
ΔxΔy=−((x2+0+(0))+2)(x2+2)(0)(6x+(0))
ΔxΔy=−(x2+2)26x
s+Δs=1−2(t+Δt)1
s+Δs−s=(1−2t−2Δt)1−(1−2t)1
s+Δs−s=(1−2t−2Δt)(1−2t)1(1−2t)−1(1−2t−2Δt)
s+Δs−s=(1−2t−2Δt)(1−2t)1−2t−1+2t+2Δt
ΔtΔs=(1−2t−2Δt)(1−2t)2Δt
ΔtΔs=(1−2t−2(0))(1−2t)2(0)
ΔtΔs=(1−2t)20
ΔtΔs=0